超高维数据统计模型变量筛选方法 PDF
首页 > 工学力学   字号:   评论:0 条
评论:0 条 
超高维数据统计模型变量筛选方法





【作 者】张俊英,张日权著
【形态项】 97
【出版项】 重庆:重庆大学出版社 , 2019.10
【ISBN号】978-7-5689-1728-5
【中图法分类号】O212
【原书定价】49.00
【主题词】数据-统计模型-变量-筛选
【参考文献格式】 张俊英,张日权著. 超高维数据统计模型变量筛选方法. 重庆:重庆大学出版社, 2019.10.
内容提要:
本书研究内容包括:(1)对于超高维数据分位数回归变系数模型,利用样条近似方法提出了排列边际回归系数的变量筛选方法;(2)使用经验似然方法研究了可加模型的变量筛选问题;(3)利用核回归方法估计条件期望损失研究了非参回归模型的变量筛选问题,提出一般模型的变量选择方法;(4)在广义线性模型框架下,探讨了顺序Lasso变量选择问题,提出了顺序Lasso迭代选择方法;(5)对于超高维数据,首次研究了GINI相关系数变量选择问题,所提到方法不受异常值点的影响,具有很好的稳健性,为超高维数据提供了一个简单、稳健和有效的变量选择方法。




试读下载地址
14667121.txt
 您阅读这篇文章共花了: 
资源求助:欢迎在本文下方留言您需求的资料,本站酌情更新。     
本文地址:http://www.bwjsw.com/post-1757.html
版权声明:本站所有资源来源于互联网公开获取,若有侵权,请来信即时删除。

返回顶部    首页   
声明:本站所有资源收集互联网公开内容,仅供学习测试使用,请下载后24小时内删除。